Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Epitaxial undoped indium oxide thin films: Structural and physical properties

Identifieur interne : 000D34 ( Main/Repository ); précédent : 000D33; suivant : 000D35

Epitaxial undoped indium oxide thin films: Structural and physical properties

Auteurs : RBID : Pascal:13-0294219

Descripteurs français

English descriptors

Abstract

Indium oxide thin films were grown by the pulsed electron beam deposition method on c-cut sapphire substrates at 10-2 mbar oxygen pressure and temperature up to 500 °C. Such conditions lead to the formation of dense, smooth and stoichiometric In2O3 films, with the cubic bixbyite structure. Epitaxial thin films were obtained at substrate temperatures as low as 200 C. Pole figure measurements indicate the existence of (111) oriented In2O3 crystallites with different in-plane symmetry, i.e. three-fold and six-fold symmetry. The origin of this effect may be related to the specificities of the growth method which can induce a large disorder in the oxygen network of In2O3, leading then to a six-fold symmetry in the (111) plane of the bixbyite structure. This temperature resistivity behaviour shows metallic conductivity at room temperature and a metalsemiconductor transition at low temperature for In2O3 films grown at 200 C, while the classical semiconductor behaviour was observed for the films grown at 400 and 500 °C. A maximum mobility of 24.7 cm2/V s was measured at 200 C, and then it falls off with improving the crystalline quality of films. The optical transparency is high (> 80%) in a spectral range from 500 nm to 900 nm.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0294219

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Epitaxial undoped indium oxide thin films: Structural and physical properties</title>
<author>
<name sortKey="Seiler, W" uniqKey="Seiler W">W. Seiler</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>PIMM, UMR CNRS 8006 Arts et Métiers ParisTech, 151 Boulevard de l'Hopital</s1>
<s2>75013 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nistor, M" uniqKey="Nistor M">M. Nistor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Institute for Lasers, Plasma and Radiation Physics (NILPRP), L22 P.O. Box. MG-36</s1>
<s2>77125 Bucharest-Magurele</s2>
<s3>ROU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Roumanie</country>
<wicri:noRegion>77125 Bucharest-Magurele</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hebert, C" uniqKey="Hebert C">C. Hebert</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Institut des Nanosciences de Paris (INSP), UMR CNRS 7588, Université Pierre et Marie Curie-Paris 6, Place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perriere, J" uniqKey="Perriere J">J. Perrière</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Institut des Nanosciences de Paris (INSP), UMR CNRS 7588, Université Pierre et Marie Curie-Paris 6, Place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0294219</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0294219 INIST</idno>
<idno type="RBID">Pascal:13-0294219</idno>
<idno type="wicri:Area/Main/Corpus">000769</idno>
<idno type="wicri:Area/Main/Repository">000D34</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium oxide</term>
<term>Crystalline material</term>
<term>Crystallites</term>
<term>Deposition process</term>
<term>Disordered system</term>
<term>Electrical characteristic</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>Electron beam</term>
<term>Epitaxial film</term>
<term>Indium oxide</term>
<term>Low temperature</term>
<term>Optical properties</term>
<term>Oxygen</term>
<term>Oxygen pressure</term>
<term>Photovoltaic cell</term>
<term>Physical properties</term>
<term>Pole figures</term>
<term>Pulsed electron</term>
<term>Resistivity</term>
<term>Room temperature</term>
<term>Semiconductor materials</term>
<term>Thin film</term>
<term>Transition temperature</term>
<term>Transparent material</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété physique</term>
<term>Electron pulsé</term>
<term>Faisceau électronique</term>
<term>Procédé dépôt</term>
<term>Pression oxygène</term>
<term>Couche épitaxique</term>
<term>Figure pôle</term>
<term>Cristallite</term>
<term>Système désordonné</term>
<term>Conductivité électrique</term>
<term>Résistivité</term>
<term>Température ambiante</term>
<term>Température transition</term>
<term>Basse température</term>
<term>Propriété optique</term>
<term>Caractéristique électrique</term>
<term>Propriété électrique</term>
<term>Dispositif photovoltaïque</term>
<term>Oxyde d'indium</term>
<term>Couche mince</term>
<term>Oxyde d'aluminium</term>
<term>Oxygène</term>
<term>Semiconducteur</term>
<term>Matériau cristallin</term>
<term>Matériau transparent</term>
<term>Al2O3</term>
<term>In2O3</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indium oxide thin films were grown by the pulsed electron beam deposition method on c-cut sapphire substrates at 10
<sup>-2</sup>
mbar oxygen pressure and temperature up to 500 °C. Such conditions lead to the formation of dense, smooth and stoichiometric In
<sub>2</sub>
O
<sub>3</sub>
films, with the cubic bixbyite structure. Epitaxial thin films were obtained at substrate temperatures as low as 200 C. Pole figure measurements indicate the existence of (111) oriented In
<sub>2</sub>
O
<sub>3</sub>
crystallites with different in-plane symmetry, i.e. three-fold and six-fold symmetry. The origin of this effect may be related to the specificities of the growth method which can induce a large disorder in the oxygen network of In
<sub>2</sub>
O
<sub>3</sub>
, leading then to a six-fold symmetry in the (111) plane of the bixbyite structure. This temperature resistivity behaviour shows metallic conductivity at room temperature and a metalsemiconductor transition at low temperature for In
<sub>2</sub>
O
<sub>3</sub>
films grown at 200 C, while the classical semiconductor behaviour was observed for the films grown at 400 and 500 °C. A maximum mobility of 24.7 cm
<sup>2</sup>
/V s was measured at 200 C, and then it falls off with improving the crystalline quality of films. The optical transparency is high (> 80%) in a spectral range from 500 nm to 900 nm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Epitaxial undoped indium oxide thin films: Structural and physical properties</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SEILER (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NISTOR (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HEBERT (C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PERRIÈRE (J.)</s1>
</fA11>
<fA14 i1="01">
<s1>PIMM, UMR CNRS 8006 Arts et Métiers ParisTech, 151 Boulevard de l'Hopital</s1>
<s2>75013 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Institute for Lasers, Plasma and Radiation Physics (NILPRP), L22 P.O. Box. MG-36</s1>
<s2>77125 Bucharest-Magurele</s2>
<s3>ROU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institut des Nanosciences de Paris (INSP), UMR CNRS 7588, Université Pierre et Marie Curie-Paris 6, Place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>34-42</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000503882310050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>43 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0294219</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Indium oxide thin films were grown by the pulsed electron beam deposition method on c-cut sapphire substrates at 10
<sup>-2</sup>
mbar oxygen pressure and temperature up to 500 °C. Such conditions lead to the formation of dense, smooth and stoichiometric In
<sub>2</sub>
O
<sub>3</sub>
films, with the cubic bixbyite structure. Epitaxial thin films were obtained at substrate temperatures as low as 200 C. Pole figure measurements indicate the existence of (111) oriented In
<sub>2</sub>
O
<sub>3</sub>
crystallites with different in-plane symmetry, i.e. three-fold and six-fold symmetry. The origin of this effect may be related to the specificities of the growth method which can induce a large disorder in the oxygen network of In
<sub>2</sub>
O
<sub>3</sub>
, leading then to a six-fold symmetry in the (111) plane of the bixbyite structure. This temperature resistivity behaviour shows metallic conductivity at room temperature and a metalsemiconductor transition at low temperature for In
<sub>2</sub>
O
<sub>3</sub>
films grown at 200 C, while the classical semiconductor behaviour was observed for the films grown at 400 and 500 °C. A maximum mobility of 24.7 cm
<sup>2</sup>
/V s was measured at 200 C, and then it falls off with improving the crystalline quality of films. The optical transparency is high (> 80%) in a spectral range from 500 nm to 900 nm.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété physique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Physical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad física</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electron pulsé</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Pulsed electron</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electrón pulsado</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Faisceau électronique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electron beam</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Haz electrónico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Procédé dépôt</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Deposition process</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Pression oxygène</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Oxygen pressure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Presión oxígeno</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche épitaxique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Epitaxial film</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa epitáxica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Figure pôle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Pole figures</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Figura polos</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Cristallite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Crystallites</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cristalita</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Système désordonné</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Disordered system</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Sistema desordenado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Résistivité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Resistivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Resistividad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Température ambiante</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Room temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Temperatura ambiente</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Température transition</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Transition temperature</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Temperatura transición</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Propriété électrique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Electrical properties</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Propiedad eléctrica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Oxyde d'aluminium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Aluminium oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Aluminio óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Al2O3</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>280</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0294219
   |texte=   Epitaxial undoped indium oxide thin films: Structural and physical properties
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024